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ABSTRACT 
The steady compressible Navier-Stokes equations coupled to the k-ε turbulence equations are discretized 
within a vertex-centered finite volume formulation. The convective fluxes are obtained by the polynomial 
flux-difference splitting upwind method. The first order accurate part results directly from the splitting. 
The second order part is obtained by the flux-extrapolation technique using the minmod limiter. The 
diffusive fluxes are discretized in the central way and are split into a normal and a tangential contribution. 
The first order accurate part of the convective fluxes together with the normal contribution of the diffusive 
fluxes form a positive system which allows solution by classical relaxation methods. The source terms in 
the low-Reynolds k-ε equations are grouped into positive and negative terms. The linearized negative 
source terms are added to the positive system to increase the diagonal dominance. The resulting positive 
system forms the left hand side of the equations. The remaining terms are put in the right hand side. A 
multigrid method based on successive relaxation, full weighting, bilinear interpolation and W-cycle is used. 
The multigrid method itself acts on the left hand side of the equations. The right hand side is updated in 
a defect correction cycle. 
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INTRODUCTION 

In the early developments of two equation models for turbulence, the validation of the models 
was undertaken on easy geometries such as plane channels and flat plates. The thin layer 
approximation was then sufficient to describe the physics and the solution could be obtained 
by the implicit forward marching scheme, originally proposed by Patankar and Spalding1. For 
more complex geometries, the full Navier-Stokes equations must be solved. Basically, two classes 
of methods for the full Navier-Stokes equations are used nowadays. A first class of methods 
consists of the explicit time-stepping schemes. An example with Runge-Kutta type stepping, 
using the Lam-Bremhorst model for the 3D compressible Navier-Stokes is given by Kunz and 
Lakshminarayana2. A second example with a Lax-Wendroff time stepping using the 
Launder-Sharma model is given by Gerolymos3. These methods suffer from a severe time-step 
restriction due to the presence of the source terms in the turbulence equations. Properly defined 
implicit time stepping schemes overcome this difficulty. Examples of methods of implicit type 
are the methods of Vandromme and Ha Minh4, Yokota5 and Morrison6. The first two of these 
methods use the central type discretization, the last uses the upwind discretization. Some methods 
are of hybrid type like the method of Mavriplis and Martinelli7, where the Navier-Stokes part 
is solved explicitly and the turbulence part implicitly. 
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Implicit time stepping methods generally allow very large time steps. This observation indicates 
that it is possible to develop methods that solve directly the steady equations without the use 
of time stepping. In this paper we develop such a method where the solution is obtained by 
relaxation and multigrid. To ensure solvability by a relaxation method, the system of discrete 
equations has to be so-called positive. To obtain positiveness, the different parts of the equations 
have to be treated carefully: the convective part, the diffusive part and the source part. These 
three parts have to be split into positive and non-positive contributions. The positive 
contributions form the left hand side of the system; the non-positive contributions form the right 
hand side. 

The methods of Gerolymos, Yokota and Mavriplis et al. employ multigrid. The explicit method 
of Gerolymos and the hybrid method of Mavriplis et al. require implicit residual smoothing 
since explicit time stepping combined with central discretization cannot provide smoothing. The 
two foregoing methods use all quantities including k and ε in the multigrid cycle. This causes 
difficulties in keeping k and ε positive. Therefore some limits on turbulence variables are imposed. 
By not taking the turbulence quantities into the multigrid cycle, this problem was not encountered 
by Yokota. In Yokota's method, only the Euler part of the equations is used in the multigrid 
formulation. It is also limited to high-Reynolds number turbulence equations. 

We follow here the approach of Yokota by not taking the turbulence equations into the 
multigrid cycle. We use, however, the full Navier-Stokes equations in the multigrid cycle. The 
low-Reynolds number form of the turbulence equations is employed. The efficiency of the method 
here comes basically from the use of the relaxation method. In a multigrid formulation, relaxation 
methods are more efficient than those based on time-stepping schemes due to their better 
smoothing properties. 

In this paper, the principles of the method are discussed and are demonstrated on the 
transitional flat plate geometries T3A and T3B. Different turbulence models are employed to 
illustrate the universal approach of the relaxation method. The multigrid method is illustrated 
for one turbulence model. 

THE DISCRETIZATION 

We consider the set of steady compressible Navier-Stokes equations for turbulent flow, coupled 
to a k-ε turbulence model. In two dimensions, the Favre-averaged equations take the form: 

where 
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The components of the stress tensor Τ and the heat flux vector q are given by: 

The molecular viscosity is denoted by μ and the turbulent viscosity by μt . Pr is the laminar 
Prandtl number (taken as 0.71 for air) and Prt the turbulent Prandtl number (taken as 0.91 for 
air). The static enthalpy is denoted by h. E stands for the total internal energy per unit mass: 

The source terms of the turbulence model are: 

where Cε1, Cε2, Cμ, σk and σε are the standard k-ε model constants; f1, f2 and fμ are the 
so-called wall proximity damping functions and D and E are the low Reynolds number terms. 
In the next sections, the discretization of the different parts (convection, diffusion and source) 
will be discussed and their role in the relaxation method will be detailed. 

The convective terms 
The convective part is treated by a flux-difference splitting method. Here, the polynomial 

flux-difference splitting developed by the second author8 is employed. This method is a variant 
of Roe-splitting. Using the polynomial character of the convective fluxes F and G with respect 
to the vector of primitive variables WT = {p,u,v,p,k,ε}, differences of flux vectors can be 
expanded as follows: 
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where 

The bar denotes the algebraic mean value. Most of the terms in the above expressions are 
self-evident. Some ambiguity arises in treating the triad terms. The following choices are made. 
The term ρuu in the momentum equation is seen as the product of the mass flux ρu with the 
velocity component u. This leads to , The other 
possible grouping into ρ and u2 being a density and twice a kinetic energy has no physical 
meaning. 

The energy flux is: 

The term ½puu2 is seen as the product of a mass flux ρu with a kinetic energy ½u2. Similarly, 
the term ρuk is a product of a mass flux and the turbulence kinetic energy. The term (p + ⅔ρk)u 
is the product of the effective pressure (molecular plus turbulent pressure) and the velocity u. 
This means that the groupings in the term ⅔ρku and the convective term ρuk are different. 

The above choice of groupings (i.e. following the physical meaning of the terms) leads to the 
simplest expressions afterwards. The basic splitting is done with respect to the primitive 
variables W. A transformation to a splitting with respect to the conservative variables 
UT = {ρ, ρu, ρv, ρE, ρk, ρe} is obtained from 

The expression ∆F = transforms into ∆F = Similarly ∆G = 
A'2T-l∆U — A2∆U. The flux-differences are split into a positive and a negative part according 
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to the sign of the eigenvalues of the matrices A1 and A2: 
∆F = 
∆G = 

We consider a vertex-centered finite volume formulation as shown in Figure 1. The flux-difference 
over the surface s1 + 1/2 with length ∆s i+1 /2 , is: 

Fi+1 -Fi = (nx ∆Fi,i+1 + ny ∆G i , i+1)∆s i+1/2 

= (nx A1 + ny A2)∆U i , i+l ∆s i+1/2 

= A i , i + 1∆C i , i + 1 ∆s i+1 /2 

= (Ai,i+1+ A i , i+1)∆U i , i+1 S i+1/2 

Splitting the matrix A into a positive and negative parts allows the definition of the absolute 
value of the flux-difference by: 

Based on (5) a first order accurate upwind definition of the flux is: 

Fluxes on the other surfaces of the control volume can be written analogously. Summation 
over the surfaces expresses the inviscid flux balance of a control volume, where the index k 
denotes the surrounding cells: 

or 

or 

Using first order upwind differencing, the convective flux balance has a positive form. This 
means that the matrix coefficients in (7) have positive eigenvalues. The resulting system 
can be solved by any relaxation method. The second order correction of the fluxes is constructed 
by the flux-extrapolation technique involving a minmod limiter. This contribution has no definite 
character and is therefore placed in the right hand side. Full details on the splitting and the 
second order correction are given in Reference 8. 

The diffusive terms 
The treatment of the diffusive terms is illustrated on the momentum-x equation. On the surface 

si+1/2 of the control volume according to Figure 1, the viscous flux terms combine into: 

The derivatives in (8) are expressed in the local coordinate system (ξ,n): 
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with J = ∆ξx∆ny — ∆nx∆ξy. For the surface in Figure 1: 
∆ξu = ud - uc, ∆nu = ¼(ua + ub-ue- uf) 

Substitution of (9) in (8) gives: 

For the other equations, a similar deduction can be made which results in: 

where with e the internal energy. 
As the tangential derivatives do not contain the central node, they do not form a positive 

system and are placed in the right hand side. The normal contribution can be put on the left 
hand side only if has positive eigenvalues. To determine these eigenvalues, the matrix is 
written as: 

We see immediately that 
λ1= 0 
λ4 = b44 = (nx g11 + ny g2l)y(μ/Pr + μ/Pr,) 
λ5 = b55 = (nx g11 + ny g21)(μ + μt/σk) 
λ6 = b66 = (nx g11 + ny g2l)(μ + μt/σε) 
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As nx = ∆ny/∆s = αg11 and ny = —∆nx/∆s = αg21, where α > 0 is a proportionality factor, we 
have: 

λ4 = α(g2/11+ g2/21)y(μ/Pr +μ/Pr t) > 0 
λ5 = α(g2/11+ g2/21)(μ + μt/σk) > 0 
λ6 = α(g2/11+ g2/21)(μ + μt/σε) >0 

For the second and third eigenvalues, the submatrix must be considered: 

With the same proportionality factor the submatrix (11) can be written as: 

Eigenvalues of (12) are then: 

The differences in the ξ-direction in the diffusive flux balance form a positive system. The resulting 
positive system in the left hand side is expressed in the variables {ρ, u, v, e, k, Ε}. The 
transformation to the conservative variables is done by 

To transform we use 
On the surface si+1/2, the contribution of the diffusive flux is: 

By summing the viscous fluxes and subtracting the result from expression (7), we obtain 

In a relaxation method, the central node on the left hand side is brought at the new iteration 
level (n + 1) while the neighbouring nodes are at the old or the new level, depending on the 
method. For Jacobi-relaxation, equation (13) can be written into ∆-formulation by 

For Gauss-Seidel relaxation, some terms in the right hand side of (14) are at the new level, 
depending on the ordering of relaxation. 
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The source terms 
Whereas the construction of the convective and diffusive Jacobians is rather straightforward, 

this is not the case for the source terms. For the source terms, a proper linearization must be 
chosen. The Jacobian of the negative source terms is then to be brought into the left-hand side 
to increase the diagonal dominance of the system of equations, see Vandromme9. Dependent 
on the k-ε-model, a different linearization is necessary. Until now the flux balance of the control 
volume is, with Ωi,j the volume: 

The source term S is split into positive and negative terms that are placed at a different iteration 
level: 

Finally we obtain: 

Source terms of a k-ε model can be written as: 
Sk = Pk -ρε-D 

with 

In our study, 3 models are compared: the Launder-Sharma model (LS)10, the Lam-Bremhorst 
model (LB) with the modification of Sieger et al.11 and the Yang-Shih model (YS)12. The five 
basic constants are Cμ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk =1,σε = 1.3. 

Table 1 summarizes the low Reynolds terms together with the boundary conditions for these 
models and Table 2 gives the damping functions. 

Table 1 Low Reynolds terms 

k-ε 

LS 

LB 

YS 

F εw - B.C. 

0 

D 

0 

0 

E 

0 
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Table 2 Damping functions 

k-ε 

LS 

LB 

YS 

fμ ft 

1 

1 

f2 

The negative source terms taken into consideration for linearization are the same for all models: 

For simplicity, we consider first the LS and LB model. By use of (15) and Table 1, expressions 
(16) can be altered into: 

If, following Vandromme9, the quantities in square brackets are considered to be constant, a 
possible linearization which guarantees positiveness, is: 

For the YS model, the same combinations are kept constant, but due to the formulation of 
F, this results in a more complex Jacobian: 

TRANSITION RESULTS 
Transitional flow with a zero-pressure gradient was calculated over a flat plate with a freestream 
level of 3% (Case T3A) and 6% (Case T3B) respectively. These test cases are described by 
Savill13. A stretched grid of 385 x 97 points was used. The grid extends upstream of the plate, 
with the sharp leading edge at station 97. The first grid point in the direction normal to the 
plate lies at about y+ = yuτ/v = 1, where uτ is the friction velocity. Stretching was applied normal 
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to the plate and in the flow direction near the leading edge. A detail of the grid in the leading 
edge region is shown in Figure 2. 

Uniform inlet profiles for total temperature, total pressure, k and Ε were specified. At inlet, 
Mach number was extrapolated from the flow field. The values of k and Ε at the inlet were 
calculated with the equations for k and ε for uniform flow with velocity U: 

where at the leading" edge the following values were matched to be in accordance with the 
experiments12,13, for L = 1 m: 

The upper and right boundaries are outlet boundaries. There, pressure was imposed. Velocity 
components, temperature and turbulent quantities were extrapolated. The part of the lower 
boundary upstream of the leading edge was treated as a symmetry line. At the plate, no-slip 
and adiabatic boundary conditions were imposed. Density and pressure were obtained by 
characteristic combinations of the equations8. 

The results were obtained with Gauss-Seidel relaxation. The precise procedure is described 
in the next paragraph. Figure 3 shows the distribution of the skin friction coefficient for the T3A 
case and all three models. Figure 4 shows the same result for the T3B case with the YS-model. 
The upper and lower lines correspond with fully laminar and fully turbulent flow fields. 

Transition point and transition length are not well predicted by all models, when compared 
to experimental results13. This shows that the models still have to be much improved. The 
calculated k-profiles for the LS-model (Figure 5) and LB-model do not reach the correct level. 
Only the YS-model is able to obtain the peak values of k+ 4 to 5 near the wall (Figure 6). 
This is probably due to the elimination of the singularities near the wall of the k-ε model in 
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the YS-version. So, the YS-model seems to be the most promising. We do not enter here a 
discussion of the modifications to the model necessary to obtain better predictions in transitional 
flows. This will be the subject of future work. The profiles shown in Figure 5 and Figure 6 are 
at the position Rex = 3600, 51500, 105750, 163000, 222500, 283500. 

MULTIGRID FORMULATION 

A standard multigrid method using four grids (385 x 97; 193 x 49; 97 x 25; 49 x 13), IP-cycle, 
full weighting as restriction for residuals and bilinear interpolation as prolongation, was 
employed. Three lexicographic Gauss-Seidel relaxations with underrelaxation factor 0.9 were 
used as prerelaxation and as postrelaxation. The first relaxation starts from the left bottom point 
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and ends at right upper point.. The second relaxation has the reversed ordering. The third 
relaxation has the same ordering as the first one. The multigrid acts on the left hand side of the 
set of equations. The right hand side is updated with a defect correction cycle. The procedure 
is the same as the one used by the second author for the Euler equations in Reference 8, except 
for the ordering of the relaxation. 

Figure 7 shows the cycle configuration. The operation count is indicated. A relaxation on the 
current grid is taken as one local work unit. A residual evaluation plus the associated grid 
transfer is also taken as one local work unit. The 1 + 3 + 1 in Figure 7 stands for the construction 
of the right hand side of the coarse grid equations, three relaxations and one residual evaluation. 
The update of the right hand side of the system of equations in the defect correction is also 
taken as one work unit. The cost of the cycle is 14.0625 work units on the finest level. This was 
verified against actual computing times. 
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The calculation starts from uniform flow. First a laminar solution is calculated up to a sufficient 
level of convergence. With this solution, initial values of k and Ε are calculated according to the 
boundary layer laws13: 

where the subscript i refers to inlet conditions. 
The turbulence equations are solved only on the finest grid and are not taken into the multigrid 

cycle. So, the same multigrid procedure as for the laminar starting phase is employed. This 
means that the turbulent viscosity is constant during a multigrid cycle and is only updated at 
the finest grid. 

Figure 8 shows the convergence behaviour for the T3A case, using the YS-model. The residual 
shown is the maximum residual over all equations and all nodes on the finest grid at the end 
of the cycle. In the figures the comparison is made with a single grid calculation. There, three 
relaxations were performed before the right hand side of the equations was updated. So, the 
single grid calculation also uses the defect correction principle. Each defect correction cycle is 
counted as 4 work units. Figure 9 shows the same result for the T3B case. 

The convergence behaviour of the single grid and multigrid calculations is similar in form. 
For example, for the T3A case, both convergence histories show a stagnation phase. There is 
no clear explanation for this phenomenon. It is not seen in the convergence history of the T3B 
case. For both cases, the final convergence is much deeper in the multigrid formulation than in 
the single grid formulation. 
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The gain of the multigrid method with respect to the single grid method increases, as is typical, 
with convergence level. For the T3A case, the gain is not very big due to the stagnation 
phenomenon. It is of the order of 2. For the T3B case, the gain is about 3.4 for the convergence 
level 10~10 and about 4.1 for the convergence level 10"11. Final convergence for the T3B case 
is obtained in multigrid form after about 10000 work units. The T3A case requires more than 
40000 work units but converges deeper. Of course, final convergence is not necessary to obtain 
usable results. For both the T3A and T3B cases, plotted results obtained at a convergence level 
of 10 - 1 0 cannot be distinguished from the results at final convergence. The convergence level 
of 10 -10 is reached after about 4000 work units for the T3A case and after about 3000 work 
units for the T3B case. The convergence speed of the multigrid method is comparable to the 
speed of the methods of Gerolymos3 and Mavriplis et al.7, who use also the low-Reynolds form 
of the turbulence equations. The same speed is obtained here although in the present method 
the turbulence equations are not taken into the multigrid cycle. Furthermore, the test cases used 
here are to be considered as very demanding on the convergence due to the transitional character 
of the flow. The examples used by Gerolymos and Mavriplis et al. are fully turbulent and do 
not have this difficulty. 

CONCLUSION 

A relaxation method for the steady Navier-Stokes equations coupled to the low-Reynolds 
number k-ε equations was developed. It was shown that the steady problem can be solved 
without recourse to time-stepping. The relaxation method was employed in a multigrid 
formulation. The turbulence equations are not taken into the multigrid cycle. The method was 
applied to two transitional flow test cases. Considering the difficulty of the test cases, the obtained 
speed of convergence is very good. 
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